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A NOTE ON GENERATING GENERALIZED TWO-DIMENSIONAL
PLATE AND SHELL THEORIES'

by
E. Reissner
Department of Applied Mechanics and Fngineering Sciences

UNIVERSITY OF CALIFORNIA, SAN DIEGO
La Jolla, California 92093

ABSTRACT

"Ordinary'' two dimensional linear shell theory may be formulated
by using six differential equations for stress resultants and couples and
for ''middle'’ surface force and moment load intensities, in conjunction
with the principle of virtual work, for the derivation of strain displacement
relations. The present paper deals with a more general formulation,
involving additional two-dimensional equilibrium eguations, as a consequence
of three-dimensional equations for force and moment stresses, in conjunction
with a stipulation of surface force and moment load intensities for two face
surfaces in place of the one middle surface. The main intent of the analysis
is an illumination of the concept of a mechanical Cosserat-surface theory,

in comparison with ordinary two-dimensional shell theory.

*

A report on work supported by the Office Of Naval Research,
Washington, D.C.




A NOTE ON GENERATING GENERALIZED TWO-DIMENSIONAL
PLATE AND SIHHELL TIHEORIES

by

E. Reissner

Introduction

Given a two-dimensional system of six scalar equilibrium 4differential

equations for stress resultants and couples acting over the cross sections of an

element of a shell, the associated strain displacement relations may be derived

by an application of a suitable version of the principle of virtual work, with this

derivation being of a particularly simple nature for the linear-theory prob-

lem (3], In the following we wish to show briefly the nature of the result which

is obtained upon deriving a more general system of two-dimensional equilibrium

equations, as a consequence of a system of three-dimensional equilibrium dif-

ferential equations for force and moment stresses, in conjunction with an ap-

propriate stipulation of surface loads for the two faces of the layer in which the

three -dimensional differential equations apply, again with a subsequent derivation

of strain displacement relations through the principle of virtual work. The main

purpose of our analysis is to throw additional light on the meaning of the concept

of a Cosserat-surface two-dimensional shell theory, in comparison with "ordi-

nary'' two dimensional shell theory [1].

The Three-Dimensional Boundary Value Problem

We assume a three-dimensional orthogonal coordinate system 5,1 hel: <
2

where the £ and £ -curves are lines of curvature on the midsurface { = 0, and
1 2

where the (-curves are straight lines perpendicular to the surface ( = 0, with the

linecar element being of the form [(1 + g/Rl)aldgl]"’ +[(1 4 (;/R?)ozadga.]2 +dCc.




% 13 3 H3 ..
We introduce force and moment stress vectors o.l, OC' ‘r_l. T c as well 3
as force and moment pseudo stress vectors 9. ng, T c given by
* 0*
~1 b | ~2 ~
la(a +_g_\r P g e T (1a)
~1 1 ~~2‘J
o*
Q (+5 =014 Rg A (1b)
~g R, x el
with components representations
8., 6. )=1(0.. 6. )t *{6 .. ¢, .n, 2a)
v de T R T i :
T.; i ): T-~1 b )n Xt+ ‘P. » ‘r, )n, 2b)
tle ~ g (lJ g~ o~ ("ic LE ~ (

where thei, and nare tangent unit vectors to the coordinate curves. The
eighteen distinct components of pseudo stress in (2a) and (2b) are readily
shown to be subject to six differential equations of force and moment equili-
brium which, in the here assumed absence of body force and moment loads,

are of the form [4]

(aaon),l +(a10a)'2+ai'2012 -az,lozz °1g
. + R 5 c€1 ¢ =0, (3a)
1% 3 :
(o, 0, ), *la, © ),2 bl N 1,2%0 ¢
R + Gga ¢ =0, (3b)
0102 - ’
(orzo‘ C),x % (°1°2g),a _c‘ll _0_23 § g (3¢)
X T VT R T Aot =




) T

ag,2_§+ 12 +(I+_g\o _(’l+i§_\c - 0. (3f)
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2 10,1

o a

We complement the differential equations (3) by the statement of boundary

conditions for the faces ( = * ¢ of the layer in the following form

(0] o}

P. q. P q

oCi(;{:c)z:ﬁ?l +-2—::, ogg(ic):'_‘:—z-g +E§, (4a,b)
q, q.

TCi(ic)zii, wgg(ic)zi?cg. (4c,d)

We note that insofar as the two-dimensional theory is concerned, which is

the object of this analysis, the traction contributions P, and p_ will come out to

¢

be the ordinary force load intensity components, while the traction contribu-

tions q? and q: will come out to be ordinary moment load intensity components
turning about the tangent vectors to the shell surface coordinate curves. At

the same time, the traction component qg will be a moment load intensity com-
ponent turning about the normal to the shell surface, and the traction component

qg will be what might be termed a "thickness-changing' kind of force load in-

tensity component.




The Two-Dimensional Equilibrium Equations

We introduce force-stress resultants N,lj and Q,l in the usual form
o e -
N.. = O.U.dg, Q=" o dl. (5a,b)

Simple integration with respect to £ of the force stress differential
equations (3a, b, c),and observation of the boundary conditions (4a, b),then
gives the conventional two-dimensional equations of force equilibrium

WNC ) o e b i 20

s waies, 0 ! P 0 (ba. B)
P = Us P, = » a,
o o R1 1 o, Ra 2

- - +pC=O. (6¢)

’ o]
We next introduce force-stress couples M., and moment-stress resultants
1

M:j and P, defined by
r T

M,.=| 0.0, M, = o (1) SR R - (N (5¢,d,e)
2o : Balren

In attempting to obtain equilibrium differential equations for the Moij'

T
Mij and P,l through appropriate integration of the three dimensional equilibrium

equations (3a) to (3f) we find it necessary to introduce supplementary two-di -

N
mensional force-stress measures Q., S, T, of the form
1 1
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With this we obtain from equations (3a) to (3c¢), with [_CC go(i Cdg
c c : X S5 .
= Ccc.l |-c - I_cc .ldg,and with a corresponding relation involving cgg,
o o} o} o
(@My) (M) o+ M -o, M, o .
) : ) : -Q tq =0, (6d)
o o 1 1
1 2
o (0] (0] (o]
(@,M )+ (alM&)'z ta, Mo e M Rl
. ; -Q,+q_ =0, (6e)
0102
a a
(ags;\)" + (GISQ),Q M11 M22 T + - 0 (6£)
o o Fer K" Rp 7
1 2 1 2

At the same time we obtain from the threc-dimensional moment equi-

librium equations (3d, e, f),

T g T
(a M:) o Mm) 2 iy 2M12‘ i Mm Pe o »
R 1 , 1, 21 +=—+Q -Q +q, =0, (6g)
o R 2 ; ¢
12 b
¥ ) %
(oM ). +{eM ) _+a M -4 M P 3
; L o Nl S y 1 el _1+Q"~_Q + =0 (6h)
o & "R 2 g tg T 7
1 2 1
T T 0
faP) _*@@P). WM M M
2 1 '1 1 2,2 + Rl? - Ra + N A " N +—_1_2 3 2 +q'T > 0, (6i)
o, @, 1 2 e 5 1 R, ¢

giving us altogether nine two-dimensional differential equations of equilibrium.
The following observations may be made concerning the above system

of nine equilibrium equations.




t

L

(1) We recover the customary six equations of force and moment
equilibrium for the case of absent moment stresses, that is for the case
that Mi"_'j = Pi = 0 and q: = qz =0, through use of all nine of the above equa-
tions. Three of these, equations (6a, b, ¢) remain as they are. Two of
them, (6d,e), assume the conventional form upon setting M?j = Mi' and
upon using the moment stress resultant equations (6g, h) for the purpose of
eliminating the quantities Q? from (6d,e). Finally, the conventional sixth
equation, expressing moment equilibrium about the normals to the shell
surface, follows here directly as the third moment stress resultant equa-
tion, without supplementary identity considerations as in the conventional
derivations of this equation.

"

(2) Even in the absence of moment stresses there remains a ''seventh'
equation, involving the thickness-changing force load intensity measure q .,

S
as well as the three transverse force-stress measures S,l and T. We note

that this seventh equation has previously been shown to be of some signifi-

cance for the analysis of sandwich-type shells [2, 5].

Strain Displacement Relations
We introduce displacement measures in a way to enable all nine surface
load intensity measures to do work and, consistent with this, we introduce
strain measures in a way to enable all twenty-one stress measures to do
work. Assuming for simplicity's sake at this point the vanishing of all dis-

placements along the edges of the shell we then have a virtual work relation

6
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bw + q,f’wi tq by + ngp + qgéw)dA
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o
1)

sk %
=[{N..6e. +Q. 6y, +Q. by + M ox" + M. 6x.
ij i et i ij e

J

+S.6:, + P 6N + Tde_ }dA, (7)
T TR &

with dA = alaadgldga, which is to hold subject to the nine equilibrium equa-
tions (6). Elimination of the quantities p and q in (7), through use of equa-
tions (6), and suitable integrations by parts, in order to eliminate deriva-
tives of the twenty-one measures of stress, with these measures now being
arbitrary, then leads to twenty-one virtual strain displacement relations
which, because of linearity, may be translated immediately into actual

strain displacement relations, as follows

1.1 3,202 W 2,1 o2 i
€&, = =t At €, = - - w, etc. (8a-d)
1 3 2 1 al a1a2
W, W
R S S o SO 9a, b)
W R S Tkt (9a,
i i
x O ¢1,1 +°’1,2 2 P %o ¢2,1 al,z 1 W . (10a-d
= e = - - —— Cts a-d)
11 12 ’
o o, o, R1 o alae R1
T v1,1 al,zwe T ‘1‘2’1 °’1,:~.‘Bz W
xll = = + r= 4 ’(12 = p~ - -E—, etc. (1la-d)
1 12 1 ala? 1
€ = P sical gl 2 kel (12a-e)
- = —_— = — ¥ e Rl a -
o : L @ 4 1 oy R, 2 o, R, %




We note that these strain displacement relations imply distinct rota-
. n T
tional displacement measures, corresponding to the moments M., and M.,
U L)
respectively, except for the case for which constraint conditions of the form
* -
v. = 0 may be assumed. Furthermore, we have the occurrence of the thick-
i
ness -changing displacement measure p, being an effective transverse normal
strain measure, with derivatives which are a measure of what might be called

anti-transverse shearing strain.

The above formulation of two-dimensional theory including the effect of
moment stresses is more general than the theory obtained earlier by asympto- 4

tic considerations of three-dimensional theory in conjunction with certain

order-of-magnitude stipulations concerning moment stress and force stress

constitutive coefficients [4]. A '"direct' two-dimensional theory corresponding

to the one considered in [4] may be deduced within the present context by in-

troducing the combined moments M.lj = Mg + M.:j and the combined loads i

q? + q: and by replacing the four moment equilibrium equations (6d, e, g, h) by

the two combined equations

(d M ) fie (o M ) + s
T Y 2 12,1

=3 Q * gl Ov
1
alaz a1l Ulaz

-0 g, =0, (13a,b)

leaving, altogether, a system of seven equilibrium equations and leading,

. * o 45 s : :

with y. = 0 and xij = nij = xij' to a system of fifteen strain displacement re -
i

lations, instead of twenty-one, involving the displacement measures UL, W,

¢i, w and p. Evidently, this direct theory is meaningful only to the extent

that it is justified by the three-dimensional considerations in [41.




An extreme case of the order-of-magnitude restrictions on moment

stress constitutive coefficients in [4] is given when it is assumed that the

three-dimensional medium is unable to support any moment stresses and
5 4
moment loads. We then have Mij = P,l =9, =4

equations (6), with M? =M., QF = &, and g°
ij ij i i i

= 0 and the nine equilibrium

[ |

q, altogether become a sys-
tem of seven equations. It is noteworthy that one of these; the ''third"
moment equilibrium equation (6i), remains a consequence of the three-
dimensional moment stress equilibrium equations, in spite of the fact that

‘. moment stresses are assumed absent at the outset. Aside from this, the

4
significant content of our present derivation for this class of cases is the
appearance of the seventh, thickness-changing, equilibrium equation (6f), in-

E volving the transverse normal stress measure T and the anti-transverse

shear stress measures S..
i

’ The strain displacement relations for this theory, again derived through
E ¢ use of the principle of virtual work (with the '""non-existent' twisting moment

¢
‘ load component qg retained for the duration of this derivation) now consist of

the four relations (8) for the components €i" together with the two relations
)

Yi =w i/a.l -u i/Ri + qsi, with these six relations being of the conventional

’

form [3], and of the seven additional relations

¢1,1 % ,2 ¢2 P ¢2'1 al,s(bl )
7(.11 = + e 4 R n = - "R’ etc. (14a-d)
aI 1 2 D | i Ql ula2 b
P P
€.=p B, ==+ py == (12a-c)
Q ’ 3 al ’ 2 a? ’




which are distinguished from the conventional relations by the appcarance

of the displacement measure p and of the three strain measures ¢, and By

Stress Strain Relations
A special case of the theory without moment stresses, as discussed
at the end of the preceding section, is given by the case of a sandwich-type

shell with stress strain relations of the form [5]

€11 =C(N11 _VNae)’ 621:(I+V)CN12, € g™ nwuny 522:,_,,,
(13)
M. = B v MR SNE BN D e M = e,
11 11 22 12 21 12 a2 22
¥, = CQQi’ eg = CTT’ Si = (0, (14)

with the €ij as in (8a-d), the xij as in (l14a-d), eg as in (12a) and the v. as in
i
(9a, b) with yl = 0. We note once more that the significant "'non-conventional

aspect of these equations of two-dimensional shell theory is the appearance

of the displacement variable p in the expressions for x] ; N and © in

22 o
conjunction with the seventh equilibrium equation (6f), for Mn' Mgm and T.
We consider as a second special case the problem of in-plane deforma -

tions of flat plates in terms of cartesian-coordinate independent variables,

as governed by the conventional equilibrium ecquations

N + N +p. =0, N + N +p =0, (15a, b)

1 21,2 1 12,1 2

where N N:"1 , together with the unconventional equilibrium equation

S +S.2-T+q€=0, (15c¢)




and together with stress strain relations of the form

N e, ph, womb b e =B, p. (16)
ij ij mn i & ij ij pC i ijj
il B e Bt b B auduwihe sm
ij ji ij ji ij i e gl W
TRE Y21 i Y,2 S T Y nt ec EEL sk

It is evident that the three equilibrium equations (15) in conjuncticn with
the stress strain relations (16) represent a generalization of the conventional
fourth order plane stress problem for the two displacement components u,
to a sixth order problem for the three displacement components u, and p.
What is not evident at this point is whether there are in fact three-dimen-
sional problems for plane elastic layers, of such nature that the conven-
tional two-dimensional plane stress approximation in terms of the Nij is not
adequate, while at the same time the two-dimensional problem with consider-
ation of the supplementary stress measures Si and T is in fact adequate. The
Section which follows is intended as a starting point towards an answer to

this question.

In-Plane Stretching of Symmetrically Laminated Sheet

We consider a plane layer with three-dimensional stress strain relations

011 = ]E:ne11 + EIaeaz + E13 Y12 + Elgegg’ 022 = Emen +
(17)
= + E e " = |5 AR + 4
e =P "o T o “scts  Fetfes
wher =U i = s = ‘
sk 1,1' %= Ua.z Y12 U1.8+U2.1' i <+ w,C' -

11
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it

o .=G

+
o 2C 12Y1g Gzavzg

1C=G11Y1Q+G12Yeg’ (18)

where Yig = Ui, c + W' o where the E and G are given even functions of the
thickness coordinate (, and where we wish to establish two-dimensional stress
strain relations involving the resultants Nij' S.l and T.

An inspection of the given three-dimensional relations indicates that
the essential difficulty now consists in evaluating the associated strain inte-

grals. We may overcome this difficulty by approximating the three-dimen-

sional displacement functions Ui and W in the form

U.=u(x ,x.), W= ({c)wx_,x_) (19a, b)
1 |l | 2 1

2

Therewith, we obtain from equations (17),

c c c
r I" W r 5
N11:u1,1-’ Eud§+...+(u1,2+u2'1)b E13d§+?_ Elgdg
-c -c -c
(20)
rc = rc
N22=. . N12= o T:u’L E1§d€+" +c—~' Eggdg
-C =C
and from equations (18)
w , rc LA
o= el 2 o 2 =
8, ==tk | - P aty = ( =~ B (21)
-Cc -c

and it is evident that we may identify equations (20) and (21) with equations
(16) upon identifying the displacement variable p in (16) with the quantity w/c

in (20) and (21).




Having equations (20) and (21) in conjunction with the three equilibrium

equations (15a,b, c) we may recover the conventional theory by assuming

that T is negligibly small in the stress strain relations (20) and use this as-

sumption to eliminate w/c from the remaining contents of (20), with the con-
ventional problem of determining the N,lj and u remaining. Subsequently we
may use (21) to obtain the Si' and then (15c) in order to determine a con-
sistent approximation for T.

In the event that a quantitative improvement of the above approximation
is desired the question arises whether the system (15) in conjunction with (20)
and (21) is in fact such an improvement or whether the explicit consideration
of the W-approximation (19b) in the shear relations (21) does n¢* in effect
require the simultaneous consideration of a refined Ui-approximation, of the

form

U, =ux % )+ (C/e)v (x ,x ). (19a )

Use of (19a’) in place of (19a) changes equations (21) into

S Sy s ANT o d w’2+2v2\rcz '
i‘( v CGn §+<C = CGlde,etc (219

-C -C

and equations (20) become

C v C

- f 1,1 g wr
Nn_u1,1~ Endg+m<:—"§_~‘g}‘:11dg+"° e . Elgdc
-C -C
L g
c L A oot
N_= oo ...;T=u1'1‘[ E, dC+—h 'r CE, 0+ ..
-c -c
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Evidently, the appcarance of the additional displacement variables

v, in the stress strain relations of the problem means that the three equili-
brium equations (15) are now inadequate. We may obtain supplementary
equations by considering supplementary weighted averages of the given
three-dimensional equilibrium equations. In doing this we find that it will
now not be possible to incorporate the resulting consequences into our initial
scheme involving use of the principle of virtual work for the derivation of
strain displacement relations for a Cosserat-type surface theory. We by-
pass this difficulty by introducing supplementary stress resultants Rij in
the form

- C

Rij = (- Qg/cz)o.ljdg, (22)
-c

and we obtain two equilibrium equations involving the Rij’ in conjunction with

c
the S,l, from the relations [ (o + 0

. )1 - C®/c®)dC = 0 in the form
-C 1,1 CJ,C( C/ 7

+ 8. =10 2
Ry, i (2/c )sJ (23)
Note that in doing this we did not need to introduce any supplementary mea-
sures of transverse shearing stress.

Having equations (23) we now complete our system of equations of two-
dimensional theory by deducing, from equations (17), the supplementary

stress strain relations

2 C .2 4
g f £
Rn— by 1.[ (1 -%)E11d‘C+v1,1-‘ (%E-C‘ )E11dg+°"

-C ) -C
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osbiis ot

B ———

+

‘% SR RN TN (24)

C 2
"
0 -SE

-C

¢

where we note specifically that only the first three of the four relations in
(17) are made use of in this fashion.

We refrain from extending the above in various possible ways, such
as to the case for which transverse bending and stretching are coupled be-
cause of material asymmetry, and such as the use of more sophisticated
averaging schemes, consistent with what would follow from a consideration
of the laminated sheet problem with the help of direct (Rayleigh-Ritz) methods
on the basis of the principle of minimum complementary energy. Instead we
recall once more the principal purpose of this note, to help bridge the gap
between '"ordinary' and '"Cosserat-type' two-dimensional theories, with an
indication of apparent limitations on the applicability of results of the

Cosserat type.
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